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Abstract
Superionic conductors are materials which exhibit exceptionally high ionic
conductivity whilst in the solid state. The manner in which certain
structures accommodate superionic conduction has preoccupied many scientists
throughout the latter part of the last century, beginning with the early debate
about the disordered structure of the superionic α-phase of silver iodide. In
this review, the key methods that have been used to deduce structural disorder
in superionic conductors are described, and the important results summarized.
The review focuses on simple archetypal systems, since these have dominated
the literature, concentrating on more recent work and including emerging
methodologies for deducing structural disorder. In most cases, the interpretation
of diffuse scattering, as observed in scattering measurements, has played a
crucial role in the understanding of these highly disordered systems and this is
considered in some detail.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

1.1. Superionic behaviour

Superionic conductors are those materials that allow the macroscopic movement of ions through
their structure, leading to exceptionally high (liquid-like) values of ionic conductivity whilst in
the solid state. This behaviour typically occurs at elevated temperatures and is characterized by
the rapid diffusion of a significant fraction of one of the constituent species within an essentially
rigid framework formed by the other species. Superionic conductors are not merely scientific
curiosities, since compounds with high ionic conductivities have a number of technological
applications ranging from miniature, lightweight high-power-density lithium-ion batteries for
heart pacemakers, mobile phones and laptop computers to high-capacity energy storage devices
for next-generation ‘clean’ electric vehicles. For the purposes of this review, however, I shall
restrict myself to describing the structural implications of superionic conduction, focusing on
three key areas. These are summarized as follows:

(a) The characteristics of structures which facilitate ion mobility.
(b) The modification to, or disorder induced in, the structure as a result of ion motion.
(c) The main methods that have been used to elucidate the processes that give rise to disorder.

Of these, the latter two will be covered in greatest detail. The two main approaches which
underlie investigations of disorder in crystalline materials result from the perception of the
disorder under question—is the disorder a small deviation from the average crystalline lattice, or
is the lattice surrounded by extensive structural disorder? For superionic materials, the former
results in descriptions in terms of isolated defects and the latter gives rise to interpretations
based on, for example, sublattice melting. Equally, superionic materials are extremely useful
systems for testing new approaches for understanding structural disorder. This is because the
disorder is often thermally activated; it can result from either a gradual or a first-order structural
phase transition; the disorder may effect substantially different proportions of ions and the
disorder may exist in one, two or three dimensions. There is therefore also a large amount
of work, particularly in the cubic-stabilized zirconias, where characterizing low-temperature
static defects is as important as understanding how the structure accommodates the observed
high-temperature superionic conduction.

There does not appear to be a hard and fast definition of whether a given material is
superionic or not. It is however generally accepted that the superionic label may be applied
to a material whose ionic conduction is above σ ∼ 10−2 �−1 cm−1, with the best superionic
conductors achieving conductivities of σ ∼ 1 �−1 cm−1 or better. One of the most interesting
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structural aspects of the superionic process concerns how the disorder develops as the ionic
conductivity increases. A material that has a superionic high-temperature phase may begin as
an insulator at low temperature and the conductivity could change by many orders of magnitude
before reaching the superionic state.

The manner in which the superionic state is achieved has been proposed [1] as a means
to classify superionic materials, namely:

• Type I superionic materials become superionic at temperatures above a first-order
structural phase transition. This behaviour is typified by the superionic α-phase of AgI.
In this material the ionic conductivity increases by around three orders of magnitude, on
passing through the β–α phase transition at 420 K.

• Type II superionic materials attain high levels of ionic conductivity following a gradual and
continuous disordering process within the same phase. Below the superionic transition,
Tc, the number of conducting defects increases rapidly before saturating above Tc. The
superionic transition is often accompanied by an anomaly in the specific heat and lattice
expansion. β-PbF2 displays typical type II superionic behaviour.

• Type III superionic materials do not have a clear phase transition, but achieve high
levels of ionic conduction via increased mobility of a (generally fixed) number of
thermally activated defects. An Arrhenius plot of the temperature dependence of the ionic
conductivity for a type III superionic conductor would show linear behaviour. Sodium
β-aluminas are typical type III superionic materials.

Typical plots of conductivity against temperature for three different types of superionic
behaviour are shown in figure 1. This is a useful classification and it will be referred to
throughout this review. However, when considering the disordering processes it actually
makes more sense to organize the review by following the different structure types that
display superionic conductivity. This is because a specific structure will often lend itself
to a characteristic superionic behaviour.

1.2. Review outline

The outline of the rest of this review is as follows. First, there is a discussion of the important
general structural considerations and the techniques that have been applied to unravel the
structural complexity associated with superionic conduction. This includes both experimental
and computational methods and is illustrated with examples where helpful. This is followed
by a survey of superionic systems that are still being actively investigated. Wherever possible,
recent work is used as examples, mostly restricted to that which is at most 15 years old. This
should ensure that the review is genuinely topical—for discussion of the earlier work in this
area, the reader is referred to reviews of the period [2–4].

2. General structural considerations

The general principles for effective superionic conduction are straightforward. First, it must
be possible for the mobile ion to move between lattice sites. This usually means that a smaller
ion will move through the ‘static’ sublattice of larger ions. Superionic conductors therefore
tend to involve small cations such as Ag+, Cu+, Li+, H+, although larger highly polarizable
anions may also give rise to significant ionic conductivity (e.g. F− or O2−). Secondly, the ion
movement must be macroscopic. The structure must have a fully connected network of lattice
sites accessible to the mobile ions with low energy barriers between them. Thirdly, the mobility
is enhanced if there are more sites for the conducting ion than there are ions to fill them, thus
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Figure 1. A schematic plot of ionic conductivity against temperature for AgI (type I), β-PbF2
(type II) and K β-alumina (type III). Tc and Tm mark the temperatures of the superionic and
melting transitions, respectively.

reducing the effect of ions blocking other ions. This is facilitated either by a structure with
an inherently large number of sites per mobile ion (such as α-AgI, whose structure possesses
six tetrahedral sites per mobile cation), or by the formation of interstitial defects (e.g. β-PbF2,
whereby mobile anions move between sites via voids within the fluorite structure).

2.1. The time-average structure

2.1.1. Conventional interpretation of Bragg diffraction. The analysis of Bragg diffraction,
whether from powdered or single-crystal samples, from x-ray or neutron diffraction, is the
starting point for all structural investigations of crystalline superionic conductors. Bragg
diffraction is strictly elastic scattering and the structure thus produced is a time-average
structure. Average lattice sites are located and disorder may be inferred using a number
of methods designed to mimic the deviation of the ion distribution from the average sites. The
simplest of these are ‘split-site’ models. Here a single, occupied lattice site may be separated
into a small number of nearby sites with proportionately reduced occupancy. These sites are
often too close to each other to be simultaneously occupied. For example, in face-centred
cubic (fcc) α-CuI, the four cations are located randomly within the eight tetrahedral 8(c) sites
at ( 1

4
1
4

1
4 ) etc, within space group Fm3̄m, each 50% occupied on average. There is evidence

that the cation distribution about these sites is elongated in 〈111〉 directions away from the
nearest anions. Hence a better fit to the Bragg diffraction data may be obtained by splitting
each of the 8(c) sites into four sites at 32(f) at (xxx) etc, with x � 1/4 and each 1

8 th occupied
on average [5].

Another method that is often employed is to characterize the disorder using anisotropic
temperature factors (or anisotropic atomic displacement parameters). These may be used
independently, or in conjunction with split-site models. Here the deviations from the average
lattice site are mimicked by a thermal ellipsoid that may elongate in certain directions to
imply preferred directions for movement. This is especially true for systems that have one- or
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two-dimensional conduction channels, when the thermal ellipsoids elongate in the directions
permitted by the channels. Average structures of the one-dimensional superionic conductors
based on hollandite are often characterized in this way [6].

A third method is to expand the temperature factors using terms based on an anharmonic
model of the thermal motion. This can result in a large number of additional model parameters
(see for example the anharmonic model for β-AgI [7]) and care must be taken to ensure that
the data are sufficient to justify such a complicated model description.

The three methods described above all aim to describe the density distribution of mobile
ions about their lattice sites more accurately than a simple lattice site model with isotropic
temperature factors. The fundamental difficulty in doing this is that the Bragg scattering is
elastic and so the data are not very sensitive to small deviations from the average structure.
Locally correlated effects, which are often involved around defect formation, are not seen
directly in the average structure. Another problem arises as a result of the paucity of
the data, as alluded to in the previous paragraph. High-temperature disordered materials
often do not show large numbers of Bragg peaks (for example, powder and single-crystal
diffraction measurements of the superionic fcc phase of Li2SO4 observed four and twenty
Bragg reflections, respectively [8, 9]). Therefore, great care must be taken to ensure that
the data are not being overinterpreted using models with an inappropriately large number of
structural parameters. As a general rule, the most reliable average structural models fit the
data well with the smallest number of structural parameters possible, ideally with significantly
fewer parameters than there are observed Bragg peaks.

2.1.2. The maximum-entropy Fourier difference method. More recently, the maximum-
entropy (MaxEnt) Fourier difference method has been applied to superionic materials [10].
This technique [11] determines the most probable average distribution of the conducting ions
within the unit cell, using the extracted peak intensities from a powder diffraction pattern
in a statistically rigorous manner. The contribution of the ‘known’ parts of the structure to
the scattering (i.e. the amplitudes and phases of the non-conducting sublattice) may also be
included, as well as prior knowledge of the local smoothness and positivity (where applicable)
of the scattering density distribution. As such, the method is less prone to excessive termination
ripples that are an inevitable consequence of ‘normal’ Fourier methods. This method provides
independent confirmation of the reliability of average structure models proposed using other
techniques and may indeed also give indications of probable conduction pathways (see, for
example, section 5.2.5b and [10]).

2.1.3. The bond valence summation method. The bond valence method has been used to
check the plausibility of crystal structures for some time (see, for example [12]). The idea
is very straightforward [13]. The total bond valence sum, V , of atom Y may be described in
terms of its local environment, i.e.

V (Y ) =
∑

i

sY−Xi , (1)

where Xi are the atoms near to atom Y and sY−Xi are the individual bond valences of bonds
between atoms Y and Xi . sY−Xi are calculated from empirically determined tabulated bond
valence parameters RY−X and b (e.g. [12]) and the observed bond length R0:

sY−X = exp

(
R0 − RY−X

b

)
. (2)

To a good approximation, b is a universal constant, b = 0.37 Å [14]. Equilibrium sites within
a crystal structure would be expected to correspond to values of V which are close to the
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ideal valence for that particular atom. This has been further developed to investigate likely ion
conduction pathways, by calculating the bond valence mismatch �V = |V − Videal | for the
conducting ion throughout the structure and including the use of more advanced formulations
of the bond valence sum [15, 16]. The most favourable pathway would correspond to the
regions of the structure where �V is lowest. This has been used to good effect for a number
of crystalline and amorphous systems (see e.g. [17] and section 5.2.5b).

2.2. Local structural environments

Having deduced the best average structure, it is now important to investigate it further, in order
to understand the microscopic mechanism responsible for macroscopic superionic conduction.
The first task would be to identify possible pathways within the structure that would provide
an easy way for the conducting ion to pass through the structure. In some systems this is
straightforward, for example the connected tetrahedral sites in the α-AgI structure, or the
open layers in the two-dimensional β-aluminas. The MaxEnt Fourier difference method
or bond valence summations described above (sections 2.1.2 and 2.1.3, respectively) may
also provide strong indications of likely conduction pathways. For some other systems it is
less obvious, especially for those which rely on defect ions for their conducting properties.
An example of this would be the high-pressure rock-salt phase of AgI, which becomes a
superionic conductor at high temperature when the silver ions move from the octahedral sites
and into tetrahedral interstitials [18]. This produces a connected pathway of partially occupied
tetrahedral ↔ octahedral ↔ tetrahedral sites in the fcc structure.

A second aspect is to investigate whether there are any distortions or relaxations of the
lattice about the diffusing ions. This should not be unexpected, particularly since the diffusing
ions may be residing, even if transiently, on sites which are unoccupied in the low-temperature
stable structure. Considerable work in this area has been carried out in studies of the fluorite
structured superionic conductors, particularly since different characteristic defects are found at
different temperatures. This work is summarized in section 5.1. Related to this, it is important
to investigate how the mobile ion is located within interstices. The interstitial sites may have
a different symmetry from that which is more usually associated with the mobile ion and it
is possible that, although it is found within the interstitial void, it does not reside centrally on
the interstitial site. This can have implications for the conduction mechanism and an example
of this is contained in section 5.2.2, which discusses recent work on the high-temperature
structural behaviour of CuI.

Probably the key measurement for these local structural studies is diffuse scattering. This
is the scattering observed in an x-ray or neutron diffraction experiment that is not Bragg
scattering or from sources of background. It arises from local deviations of the structure from
its time average and is often characterized by weak, broad features in the scattering pattern.
Diffuse scattering, as outlined in section 3.1, may therefore be used to characterize the local
changes in the structure as a result of the superionic conduction process. Other measurement
techniques are also employed to determine the local structural environment of the conducting
ions, notably the spectroscopic technique ‘extended x-ray absorption fine structure’ (EXAFS)
and its contribution will be discussed in section 3.3. In addition, all these approaches have
benefited from computer modelling, whether molecular dynamics (MD), Monte Carlo (MC) or
reverse Monte Carlo (RMC) (see section 4). These methods have become more prominent in
recent times, partly because of the difficulty of using analytical approaches for systems which
are not highly ordered or completely disordered, but also because of the increases in accessible
computer resources.
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3. Local structural probes

3.1. Diffuse scattering

Diffuse scattering in a scattering experiment may be loosely referred to as the scattering from
the sample which is not Bragg scattering. As such it can have many origins, arising from, for
example, lattice vibrations, stacking faults, substitutional, orientational or magnetic disorder
in the material [19]. Of more relevance to superionic conductors, diffuse scattering may also
arise from mobile ions or from lattice relaxation around defects associated with the conduction
process. In a routine Bragg diffraction measurement it may be seen as an inconvenience,
adding to the background signal and impeding the Bragg intensity extraction. However, it
is a key signature for disordered structures and, when interpreted carefully, can be used to
understand the form of disorder present in the material. For structural investigations, there are
two basic measurements, the diffraction measurement and the elastic measurement.

3.1.1. Elastic diffuse neutron scattering. In the early days of diffuse scattering studies of
the disordered structural features of superionic conductors, this was the method of choice.
The two basic instruments for diffuse scattering studies were the triple-axis spectrometer [20]
and the time-of-flight or ‘chopper’ spectrometer [21], both of which allow the separation
of the elastically and inelastically scattered neutrons. Of these, triple-axis spectrometers
were more commonly used for diffuse scattering from superionic materials, largely because
those studying superionic conductors had easy access to such instrumentation at the neutron
research reactors at Harwell, UK, and the Institut Laue-Langevin, France. The experimental
method is straightforward; a large single crystal is placed on a neutron triple-axis spectrometer,
configured to collect data corresponding to scattering events that do not change the energy of
the neutron (within a certain energy resolution). A point-by-point grid of data is collected
over a given reciprocal-lattice plane within the kinematic limits of the spectrometer. The data
can be readily normalized using the expected intensities of phonon scattering. Using this
experimental method, diffuse scattering that is inelastic in origin is minimized experimentally.
This is very important when investigating elastic features near Bragg peaks, where acoustic
phonon scattering (giving rise to strong thermal diffuse scattering) can be very intense at
low energy transfers. In addition, an experimental distinction may be made between truly
elastic coherent diffuse scattering (arising from static defects in the structure) and quasielastic
coherent diffuse scattering (arising from defects in the structure which possess a finite lifetime).
The former scattering is a delta function at zero neutron energy transfer, i.e. �E = 0, and the
latter scattering is centred on �E = 0, but with a finite distribution in neutron energy transfer.

Figure 2(a) shows the energy-integrated quasielastic neutron scattering data from the
fluorite, CaF2, within its superionic region at 1473 K [22]. Here the quasielastic scattering was
determined by measuring as a function of energy transfer across the elastic line at each Q-point
using a triple-axis spectrometer and fitting a Lorentzian energy lineshape to the scattering
profile. This quasielastic signal arises from deviations from the average structure and the
integrated intensities as a function of scattering vector, Q, are used to determine possible
defect cluster models and the linewidths are related to the likely lifetime of the defects.

The interpretation of elastic diffuse scattering from superionic conductors has been based
on ‘aggregated defect cluster’ models [22–24] or ‘correlated microdomains’ [25]. The
two methods are similar and use a formalism whereby a cluster is composed of vacancies,
interstitials and relaxed ions. Vacancies are lattice sites that are not occupied within the cluster,
interstitials are occupied non-lattice sites and relaxed ions occupy non-lattice sites close to the
lattice site that they would occupy in the regular, defect-free, lattice. The diffuse scattering is
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Figure 2. (a) Integrated quasielastic coherent diffuse scattering from a single crystal of CaF2
measured using a triple-axis neutron spectrometer (after [22]). The right- and left-hand sides of
the h00 axis correspond to data in the 011̄ reciprocal-lattice plane at 1475 K and difference data
(1475–1273 K) in the 010 reciprocal-lattice plane, respectively. (b) Equivalent reciprocal-lattice
planes of diffuse scattering from CaF2 calculated using a defect cluster composed of nine vacancies
that arise from one ‘true’ anion interstitial and eight relaxed anions (see [22] for details).

then calculated for the defects by assuming that they are isolated and non-interacting or that
they aggregate in prescribed ways (see [22–25] for details).

3.1.2. Diffuse scattering in x-ray and neutron diffraction. These types of experiments are
usually designed to survey large volumes of reciprocal space rapidly, normally using single-
crystal samples. The simplest, and certainly the earliest, is the Laue x-ray photograph [26].
Other photographic x-ray methods using monochromatic x-ray beams are also popular [27].
More recently, two-dimensional image plates or CCDs have been used instead of film [28, 29].
These methods all cover a wide area of reciprocal space in a single exposure and show regions
of strong diffuse scattering very rapidly. Other quantitative x-ray methods use position-
sensitive detectors instead of film, or even single detectors with analysers, and result in high-
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Figure 3. A diagram showing the 11-detector array on the neutron time-of-flight SXD. Each
position-sensitive detector consists of a 64 × 64 array of 3 × 3 mm2 pixels. The instrument is
designed with six detectors in the equatorial plane and five below the equatorial plane forming a
cross underneath the sample. Around 50% of the scattering from the single crystal is collected by
the detectors, with almost uninterrupted coverage both in the equatorial plane over a wide range of
2θ scattering angle and around the sample at 2θ = 90◦ .

quality data [30, 31]. In contrast, neutron diffraction techniques have not traditionally been
used for diffuse scattering surveys. However, new instrumentation such as the time-of-flight
single-crystal diffractometer, SXD, at the ISIS spallation neutron source, has been used very
successfully [32]. Here the combination of a large array of two-dimensional, position-sensitive
detectors (see figure 3) and a time-sorted polychromatic neutron beam allows extremely large
volumes of reciprocal space to be collected for each crystal position.

3.2. Total scattering

A total scattering measurement aims to measure all the scattering from a (usually powdered)
sample (Bragg and diffuse scattering, elastic and inelastic scattering) in a manner that can
be rigorously corrected [33, 34] to yield the so-called ‘total scattering structure factor’, i(Q),
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which contains the interference terms from the total scattering cross-section [35]. This may
then be Fourier transformed to give a total pair correlation function, D(r), which in turn may
be used to determine the instantaneous atom–atom correlations in a material. Formally, the
scattering from a polycrystalline sample with n distinct species, j , each in proportion c j , per
atom N , may be defined as

1

N

dσ

d�
= i(Q) +

n∑
j=1

c j b2
j , (3)

where 4π
∑n

j=1 c j b2
j is the Q-independent total scattering cross-section of the material and

i(Q) is the total scattering structure factor. This may be Fourier transformed to yield a total
pair distribution function, D(r):

D(r) = 2

π

∫ ∞

0
Qi(Q) sin(Qr) dQ, (4)

which in turn is composed of a weighted sum of partial pair correlation functions gi j(r):

D(r) = 4πrρ0

n∑
i, j=1

ci c j b̄i b̄ j [gi j(r) − 1]. (5)

Here ρ0 is the number density of the material and b̄ j is the neutron scattering length of species
j . Similar formalisms exist for x-ray total scattering, although they are more complex, due to
the Q-dependent x-ray scattering form factor. Other related functions have also been defined in
the literature, such as F(Q), S(Q), T (r) and G(r), and their interrelationship has been detailed
previously [35]. The information contained in total scattering is fundamentally different from
the time-averaged structure obtained from an elastic measurement, since it corresponds to a
‘snapshot’ in time of the structure. This means that models produced using total scattering
data will also represent the structure at an instant of time and any ions undergoing motion will
appear ‘frozen’.

These measurements, applied to superionic conductors, have come to the fore in recent
years as a result of improved instrumentation (particularly time-of-flight neutron diffraction)
and developments of modelling methods such as the RMC technique (see section 4.3). Also,
there has been an increased interest in the relationship between the structures of the disordered
crystal (just below the melting temperature, TM ) and the molten salt (above TM ) [36]. Total
scattering measurements taken above and below TM allow a direct comparison of the crystalline
and molten local structures (see, for example, figure 4).

3.3. EXAFS

EXAFS measures the interference pattern between a photoelectron excited from the core level
of an atom and the potential generated by the surrounding atoms. It is therefore an atom-
selective local structure probe that can be used to determine the local environment of specific
elements in a material. A very good review of the subject, focusing on liquid studies but
applicable to other disordered systems, has recently been published [37]. This, taken together
with a recent theoretical review [38] gives a very good summary of the current state of EXAFS
spectroscopy and methods for its interpretation. The structural information gained from an
EXAFS experiment is similar to that obtained from total scattering in so far as it is sensitive to
the instantaneous positions of atoms and average atom locations can only be inferred from the
data. Radial distribution functions, obtained from EXAFS data, are dominated by short-range
correlations (since the photoelectron has a short lifetime, or mean free path, in the material)
and the limited range of data in reciprocal space can broaden the real-space peaks. The ability
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Figure 4. Neutron total scattering from powdered AgBr at (from top to bottom) 293 K (offset
vertically by 1.8), 490, 669, 684, 689, 697, 698, 699, 703 and 706 K. Each successive plot is offset
vertically by −0.2. There is a strong similarity between the diffuse scattering in the total scattering
from crystalline AgBr just below melting (TM = 701 K) and the total scattering from molten AgBr
(after [48]).

to probe the environment of a specific atom is a big advantage, particularly for doped systems.
Another advantage over total scattering methods is that EXAFS, at least in principle, is sensitive
to many-atom correlations in the system.

EXAFS, with a few notable exceptions, has not been used extensively on superionic
conductors. Initially this was probably due to uncertainties in the interpretation of the EXAFS
signal and even now, with a much-improved theoretical characterization of EXAFS, it can be
difficult to extract precise information about mobile ions within a crystalline material from
EXAFS. One early exception to this is the work on AgI, CuI, CuCl and CuBr (see [39]
and references therein). Here EXAFS results were used to develop an excluded-volume
model for superionic conduction [40] and as a method for determining nearest-neighbour
interaction potentials [41]. Other more recent examples include further EXAFS measurements
on AgBr and on superionic glasses. Both will be covered in later sections of this review (see
sections 5.2.3 and 5.4, respectively).

4. Computer modelling

Computer modelling has proved a popular way to understand the disorder associated with
superionic conduction. This is for a number of reasons. First, by definition, the disorder
is dynamic in origin. This means that more established methods for understanding diffuse
scattering, such as those which use analytical expansions of the scattering equations,attributing
the different terms to specific structural features, are not particularly effective. (Although these
methods do work at low temperatures in cases where the disorder arises from doping and the
static disorder around the dopant ion is being investigated.) Secondly, in many cases, the
disorder is extensive. Computer simulation has played an important role in the development
of structural models of liquids and can also be applied to amorphous or ‘liquid-like’ crystalline
superionic materials. Thirdly, and most pragmatically, the subject has come to the fore with the
advent of better and better computers. Superionic conductors have been used to demonstrate
the effectiveness of these simulation techniques. The most successful method has probably
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been MD simulation, since the simulations can be used to not only produce a disordered
structure but also the dynamics associated with ionic conduction. The MC-based methods
(MC and RMC) will yield the structure, and although MC simulation may be used to determine
thermodynamical properties, it has rarely been used to investigate superionic conductors in
such a rigorous manner. In this section we will consider briefly the three methods in turn, and
refer to later sections where they have been used effectively.

4.1. Molecular dynamics simulation

The concept behind MD simulation is very straightforward. Atoms within a configuration,
with positions, x(t), and velocities, v(t), at time, t , are moved to positions, x(t + �t), and
velocities, v(t + �t), at time t + �t , on the basis of given interatomic potentials and Newton’s
laws of motion. The method relies on the approximation that for small �t , the acceleration
on any given particle is constant for the whole time step, �t . This is only true in the limit
�t → 0 and various algorithms have been proposed to provide a good approximation to the
exact solution whilst still retaining a computationally sensible value of �t [42].

It can be quickly appreciated that MD simulation is a very useful method for investigating
superionic conductors (see, for example, [43]). The atom positions may be used to extract
structural parameters (average positions and instantaneous correlations) and atom trajectories
may be traced to investigate diffusion pathways and mechanisms. In addition, since the
velocities are recorded at each time step, dynamical processes may also be extracted, such
as lattice vibrations and phonon density of states. The main drawback of the method is that it
is more computationally costly than the MC-based methods. This tends to mean that smaller
configurations of atoms must be used for MD simulation.

4.1.1. The RVP potential. Many MD studies of copper- and silver-based superionic materials
have used the so-called RVP two-body effective interatomic potential, named after the three
workers who developed it [44, 45]. The two-body potential is formulated in the following
manner:

Vi j(r) = Ai j(σi + σ j )
n(i j)

rn(i j)
+

Zi Z j e2

r
− 1

2
(αi Z 2

i + α j Z 2
j )

e2

r4
− Wi j

r6

(a) (b) (c) (d)

(6)

where (a) is an r−n core repulsion term which approximates exp(−r/ρ) behaviour; (b) is a
point charge electrostatic term; (c) is a polarization term describing the secondary interaction
between the ion and the polarization that it induces on a neighbouring ion; and (d) is the first
term in a polynomial expansion characterizing the van der Waals interaction which describes
the simultaneous polarization of the two ions’ electron distributions. Ai j , αi and Wi j are
constants, σi are ionic radii and Zi are effective ionic charges. This potential has been very
successful in describing (amongst others) the disorder in AgI, CuI (section 5.2.2) and Ag2Se
(section 5.2.4) and the sequence of phase transitions in AgI as a function of pressure and
temperature [46].

4.2. Monte Carlo simulation

MC simulations also use a set of interaction potentials. These are used to calculate the energy,
E , of a configuration of atoms. The method of importance sampling, first suggested by
Metropolis et al [47], is used to determine the probability of the configuration changing between
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two states. In essence this means that the configuration is allowed to change between two states
depending on the change in energy of the two states. A common probability function is given
by

P =
{

exp[−�E/kB T ] if �E > 0

1 otherwise.
(7)

As with MD simulation, the choice of interaction potential is central to the success of the MC
method. However, for MC simulation, if the structure is of primary importance, there is a
little more flexibility in how the potential may be constructed. Very simple nearest-neighbour
interactions may be chosen to give a particular local conformation with computationally simple
parametrization. Simple interactions permit larger configuration sizes. It is also possible
to constrain the types of atom moves to moves along specific directions, moves that swap
atoms etc. This has the effect of restricting the range of configurational space available to the
simulation and may be justified in specific circumstances.

A typical algorithm for an MC simulation would consist of the following:

(1) Generate a starting configuration of N atoms of appropriate density and impose periodic
boundary conditions. For crystalline materials, this will usually be a supercell of the
crystal unit cell.

(2) Calculate the starting energy, Eold , based on the chosen potential functions.
(3) One atom is selected at random and moved a random amount and the energy is recalculated

(Enew).
(4) If �E = Enew − Eold is below 0, then the move is accepted and the ‘new’ configuration

becomes the ‘old’ configuration. If �E > 0 then the move is accepted with probability
exp[−�E/kB T ].

(5) The process is repeated from step 3 until the energy does not, on average, reduce further
and the simulation is said to have converged. The simulation is then repeated to collect
statistically distinct configurations for averaging.

4.3. Reverse Monte Carlo modelling

In recent years the RMC modelling method has been used extensively to investigate the
local order in superionic conductors. Indeed, the first use of RMC on a crystalline system
was to determine the atomic origin of the observed pre-melting behaviour in ion-conducting
AgBr [48]. It was first developed to investigate the structures of liquid and amorphous materials
by comparing correlation functions from a three-dimensional distribution of atoms with those
determined experimentally [49]. Since then the technique has been widely used to characterize
structural disorder in a wide variety of systems, including crystalline and amorphous superionic
conductors. It has recently been reviewed in detail [50].

The algorithm used is identical to the MC algorithm described in section 4.2, except that
instead of minimizing the energy of the atom configuration on the basis of potential functions,
the difference between the experimental and calculated correlation functions is minimized.
Formally, the function minimized is (for example)

χ2
RMC =

∑
k

N∑
i=1

[iCalc(Qi )k − iE xpt (Qi )k]2/σ 2
k (Qi )

+
∑

l

N∑
i=1

[GCalc(ri)l − G E xpt (ri )l]
2/σ 2

l (ri ) +
m∑

j=1

( f Req
j − f RMC

j )2/σ j . (8)
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Here χ2 is composed of comparisons between calculations from the model and the k total
scattering structure factors, i(Q), the l total radial distribution functions, G(r), and the values of
the m constraints, f . The values of σ may be determined directly from the experimental errors,
or the σ can be used as weighting terms, to emphasize a particular correlation function. They
may also be iteratively reduced during the minimizing procedure, which is akin to simulated
annealing (where an MC simulation is run and the temperature is iteratively reduced to attempt
to produce a structure with the lowest energy). The third term on the right-hand side of
equation (8) allows the modeller to incorporate constraints. These may be simple, e.g. defining
the number of neighbours of a particular ion about another, or may be more complex, defining
specific local geometries. More recently, the Bragg intensities have been used to constrain the
RMC model [51], by introducing a constraint of the form∑

hkl

(s|Fhkl |2E xpt − |Fhkl |2Calc)
2/σ 2

hkl , (9)

either using extracted Bragg intensities, or by profile fitting the Bragg diffraction pattern. This
results in extremely reliable structural models that accurately describe the local disorder within
the average structure.

5. Superionic systems

5.1. Superionic conductors with the fluorite structure

The fluorite structure consists of a simple cubic array of anions with a cation filling every other
anion cube centre. This results in a fcc structure with cations at 4a (000) sites and anions at 8c
( 1

4
1
4

1
4 ) sites in space group Fm3̄m. Several fluorite structured materials display a specific heat

anomaly at a high temperature, TC , which is ∼80% of the melting transition temperature. This
corresponds to a large, but continuous, increase in ionic conductivity, resulting from an increase
in mobile ionic defects. These are all characteristics of a type II superionic transition. In
addition, aliovalent doping with 3+ (or 4+) cations can lead to an increase in anion concentration
and a decrease in TC , whilst maintaining the fluorite lattice. Furthermore, the high-temperature
fluorite structure of zirconia may be stabilized to room temperature by doping with aliovalent
cations and with a corresponding reduction of anion density. This composite family of materials
has been extensively studied using diffuse scattering and computer modelling, largely because
of the underlying simplicity of the structure, the availability of large single crystals and, at least
initially, their being model systems for the high-temperature behaviour of the fission material,
UO2 (see, for example, [52] and [53]).

There is not space in this review to summarize all the investigations into the structural
disorder within this family of superionic materials and indeed much of the work has been
reviewed recently [19]. The group based at Harwell, UK, in the 1970s and 1980s made
extensive use of single-crystal diffuse neutron scattering and ‘aggregated defect cluster’
models to understand the disorder associated with the mobile ions in undoped fluorites at
high temperature (see, for example, the work on β-PbF2, SrCl2 and CaF2 [22], a later
review [54] and figure 2). This was followed by later similar work on the doped fluorite
Ca0.94Y0.06F2.06 [55] and the related cubic-stabilized zirconias, Y2O3-doped ZrO2 [24] and
CaO-doped ZrO2 [56]. Different defect clusters were responsible for the diffuse scattering in
these systems, reflecting the different chemical compositions. At room temperature, the excess
anions in Ca0.94Y0.06F2.06 are accommodated within a cube–octahedral defect (figure 5) [57],
whereas vacancies in anion-deficient Y2O3-doped ZrO2 are found in single-vacancy, di-
vacancy or aggregated di-vacancy clusters, depending on the degree of doping [24]. A different
defect is found in CaO-doped ZrO2 [56]. These are largely static defects, although the smaller
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Figure 5. (a) A diagram showing part of the undistorted fluorite lattice consisting of six edge-
sharing cation-filled anion cubes surrounding an empty cube. (b) The equivalent portion of the
fluorite lattice distorted into six corner-sharing square anti-prisms. This arrangement incorporates at
least four additional anions around the inner empty cavity and forms the so-called cube–octahedral
defect cluster used to explain the diffuse scattering in Ca0.94Y0.06F2.06 [55]. The positions of the
original anions, now anion vacancies, are also shown in (b) for completeness. Cations and anions
are shown as large and small spheres, respectively.

defects may become mobile at higher temperatures, like the small mobile defects found in the
undoped systems at high temperature. The temperature and dopant concentration dependence
of the diffuse scattering gives important information on the relative influences of different defect
clusters on the superionic conductivity of doped and undoped fluorite superionic conductors.

X-ray diffuse scattering has also been used to complement the neutron diffuse scattering
(e.g. [24] and [56]), although the relatively weak scattering of light anions in the presence of
strong scattering from the heavier cations means that the x-ray signal is dominated by the cation
sublattice. The weakly scattering anions have been used to an advantage in an x-ray diffuse
scattering study of Y2O3-doped ZrO2 [58]. To a first approximation, as far as x-ray scattering is
concerned, Y2O3-doped ZrO2 appears like a binary alloy composed of Y and Zr. Additionally,
the similarity of Zr and Y x-ray scattering factors means that only the term associated with
the mean squared atomic displacements contributes significantly in the general expression for
diffuse scattering from a disordered alloy [59]. As a result, the x-ray diffuse scattering could
be interpreted in terms of the lattice expanding away from Y cations and contracting towards
Zr cations. This interpretation would be very difficult using neutron diffuse scattering, where,
although Zr and Y also possess very similar neutron scattering lengths, the scattering signal
is enhanced by additional correlations involving the anions and the simple theories based on
diffuse scattering from binary alloys would be inappropriate.

Welberry and co-workers have extended their earlier work to utilize a number of
interpretative methods, some of which are summarized in [60]. One of their approaches
was to use a two-stage sequential MC algorithm to generate a three-dimensional model of
Zr0.61Y0.39O1.805 [61]. To construct their model, the oxygen vacancies were first ordered on a
64 × 64 × 64 array (32 × 32 × 32 unit cells) using near-neighbour pair interactions designed
to mimic expected local vacancy atom structures. The second stage of the MC simulation
involved relaxing the cation positions using a harmonic potential, E = k(d − d0)

2, where d is
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Figure 6. (a) X-ray diffuse scattering in the (hk 1
2 ) reciprocal-lattice plane of yttria-stabilized cubic

zirconia. X and Y mark the points (40 1
2 ) and (04 1

2 ), respectively. (b) The equivalent reciprocal-
lattice plane calculated from a two-stage MC simulation as described in the text. By way of
comparison, (c) is determined from a model where the vacancy distribution is determined directly
using a modulation wave synthesis. The distortions around the vacancies are then introduced into
the model in the same way as in (b). After [60–62].

the distance between two neighbouring cations and d0 depends on whether the two cations are
interspersed by an oxygen atom or vacancy. Following this, the diffuse x-ray scattering was
calculated using only the cation positions (see above) and compared with the measured data (see
figure 6). The arrangement which gave the best agreement with the diffuse scattering data was
one where the vacancies are ordered to avoid nearest-neighbour (1/2)〈100〉 pairs, next-nearest-
neighbour (1/2)〈110〉 pairs and third-nearest-neighbour (1/2)〈111〉 pairs across empty cube
centres, but to allow (1/2)〈111〉 pairs across cation-filled cube centres. This vacancy–vacancy
arrangement is consistent with a number of ordered fluorite-related superstructures.

In a related work, a modulated wave approach was used to generate the structural model,
resulting in a similar ordering scheme [62] (see figure 6(c)). Most recently, there have been
investigations of how effective RMC modelling may be when applied to cubic-stabilized
zirconia using single-crystal diffuse x-ray scattering (see for example [63] and [64]). This
work is more of a critique of the RMC method, as applied to single-crystal diffuse scattering,
rather than giving additional insight into the defect structure of cubic-stabilized zirconia. Hence
it will not be discussed further here. Finally, the local environment about specific ions can
be probed effectively with EXAFS, and this technique has been used to investigate the bond
lengths and coordinations around the cations in a whole series of cubic-stabilized zirconias
with complex dopants [65].
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Figure 7. A plot showing the unit cell of α-AgI. The site labels are defined in bcc space group
Im3̄m. The most probable cation lattice sites are shown as larger, darker spheres.

5.2. Crystalline copper and silver-based superionic conductors

The crystalline copper and silver halide and chalcogenide superionic conductors are another
large class of much-studied superionic conductors. They are predominantly based on two
structure types consisting of a body-centred cubic (bcc) or fcc anion sublattice and disordered
cations. The former results in the α-AgI structure and the latter are disordered structures based
on the zinc-blende or rock-salt structure types.

5.2.1. Systems with the α-AgI bcc structure. There have been many studies of the disorder in
α-AgI, spanning most of the last century, and encompassing virtually every experimental
and theoretical approach (see [66] or [19]). Experimental investigations include neutron
total scattering [67], x-ray diffuse scattering [68] (both on powdered samples), single-crystal
diffuse scattering (e.g. x-ray [69] and neutron [70]) and EXAFS [39, 71]. Models have
been calculated using MD simulations, based on a two-body RVP effective interatomic
potential (section 4.1.1, [45]), MC simulations (e.g. [72]) and RMC modelling [67]. The
key structural issue is understanding how the silver ions are accommodated within the bcc
iodine sublattice. This may then be used to deduce the cation migration pathways within
the lattice, which give rise to the exceptionally high ionic conductivity. The α-AgI structure
is shown in figure 7. The two silver ions per unit cell are distributed between 42 possible
lattice sites, although the general consensus is that the sites are occupied in the preference
order 12d(tetrahedral) > 24h(trigonal) > 6b(octahedral) in space group Im3̄m. Hence
conduction takes place between tetrahedral sites via trigonal sites, with only a small occupation
of octahedral sites.

Recent high-pressure studies have shown that CuCl and CuI also possess a phase with
the α-AgI structure at high temperature and high pressure [73, 74]. This is in addition to
CuBr, which has an α-AgI structured phase just below melting at ambient pressure [75]. It
is slightly surprising that this phase may be stabilized by high pressure and high temperature,
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when superionic materials are generally thought to have low-density structures. However,
the α-AgI structure is actually more dense than the lower temperature fcc (or hcp) structures
found in these copper and silver binary halides. This emphasizes the suitability of the α-AgI
structure for superionic conduction; even though it is denser than the equivalent superionic fcc
structures, the conductivity is still higher.

5.2.2. System with the α-CuI fcc structure. Similarly comprehensive work has been
carried out on α-CuI, including neutron total scattering measurements [76], EXAFS
measurements [39], RMC modelling [76] and MD simulations [77]. α-CuI consists of a
fcc anion sublattice with the four cations per unit cell principally distributed between the
eight available tetrahedral interstices, in space group Fm3̄m [78]. Two controversies may
be highlighted with reference to this superionic phase. The first concerns the details of the
ionic conduction mechanism in fcc systems. Tetrahedral cavities within the fcc structure share
common faces with neighbouring octahedral cavities whereas neighbouring fcc cavities are
linked by cavity edges. As a result, the cation conduction mechanism has been thought to
follow a tetrahedral site ↔ octahedral site ↔ tetrahedral site etc pathway. This mechanism
was confirmed by a polyhedral analysis (whereby a cation is assigned to a particular site if
it resides within the polyhedron defined by anions that are nearest neighbours to that site) of
EXAFS measurements that suggested that ∼30% of the cations reside in octahedral sites [39].
However, a distinction should be drawn between a cation residing in an octahedral cavity
and residing on an octahedral site in the centre of the cavity. This is because more recent
Rietveld refinements of the average structure find no evidence for occupation of octahedral
sites, but instead large anharmonic displacements about tetrahedral sites, which are largest in
the 〈111〉 directions towards the octahedral sites [78]. The distribution of cations is such that,on
average, some cations will be in octahedral cavities, but not necessarily on the octahedral site.
This distinction is clearly explained with reference to a MD simulation, which found ∼35%
cations in octahedral cavities but only a few per cent on the octahedral site [79], although they
subsequently used a polyhedral analysis to ‘confirm’ the tetrahedral site ↔ octahedral site ↔
tetrahedral site conduction pathway. This interpretation was then challenged by another MD
study [77]. This study obtained similar ion distributions but, by tracking individual cations,
showed that the ions actually diffuse directly from tetrahedral to tetrahedral site in a ∼〈100〉
direction through the edge of the octahedral cavity and not via an octahedral site at all.

The above discussion may be concerned with a subtle distinction in the definition of the
location of the diffusing cations, but it has important implications on how the conduction
mechanism may be understood. If the tetrahedral site ↔ octahedral site ↔ tetrahedral site
pathway is accepted, then it must be assumed that the cation can be assigned a genuine
octahedral coordination. This is not very favourable for copper halides and indeed high
pressures are required to transform the copper halides into an octahedral arrangement [80, 81].
If the mechanism is via the edges of the octahedral cavity, the cations diffuse via distorted
‘tetrahedral’ coordinations with three anions. The diffusion is never directly across the centre
of the octahedral cavity and the preferred tetrahedral arrangements are preserved.

The second controversy concerns the ability of the RVP potential to reproduce the local
structural environment reliably. Differences have been observed in the low-r features of the
partial pair correlation function, gCu−Cu(r), of superionic α-CuI, obtained from RMC modelling
of total scattering data and MD simulations using an RVP potential [76]. As can be seen in
figure 8, a peak is observed at low r in the RMC results, which is not found in the MD results. It
is suggested that this difference arises because the MD simulation cannot reproduce the low-r
peak in gCu−Cu(r) without distorting the CuI environment. Such polarization effects may only
be reproduced using additional three-body terms in the potential used for the MD simulations.
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Figure 8. Partial radial distribution functions of α-CuI determined from MD simulations (thick
curves) and RMC modelling (thin curves) (after [77] and [76] respectively).

This demonstrates that although the RVP potential does reproduce many of the characteristics
of the superionic process in these materials, it is nonetheless only an effective two-body
parametrization of the true inter-ionic potentials. Further evidence of this difference has been
observed when comparing MD results with partial radial distribution functions obtained from
RMC modelling and isotopic substitution experiments on the silver chalcogenide superionic
systems (see section 5.2.4) [82–84].

5.2.3. Systems with the AgBr rock-salt structure. Before moving on to more complex copper-
and silver-based superionic conductors, a brief mention should be made of the silver halides
with the rock-salt structure. AgBr and AgCl both display more ionic character than the
other copper and silver halide superionic materials and both possess the rock-salt structure
at room temperature and pressure. Here the cations reside in the octahedral sites of the anion
fcc lattice. The ionic conductivity increases anomalously as the materials approach their
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Figure 9. The temperature dependence of (a) the cell parameter, (b) the linear expansivity and
(c) the cation occupation of tetrahedral interstitial sites of rock-salt structured AgI at 1.1 GPa
(from [91]).

respective melting points, achieving high values, but without a clear superionic transition.
The increase in conductivity is associated with an increased cation occupation of tetrahedral
interstices [85] and a collinear interstitialcy mechanism is responsible for the ionic conduction,
whereby a tetrahedral interstitial cation displaces a neighbouring cation from an octahedral
site into another tetrahedral interstice in a linear 〈111〉 direction [86]. However, the number of
tetrahedral interstitial cations remains small and unsaturated, even just below melting (∼4%
cation interstitials are found in AgBr 1 K below TM [87]), and the behaviour has been ascribed
to a ‘pre-melting’ effect [88]. The nature of the short-range correlations has been the subject of
recent discussion with regard to high-quality EXAFS results from both the Ag and Br K edges
(see [89] and references therein). Using modern interpretative methods, this work questions
the accuracy of the near-neighbour correlations obtained by RMC modelling [87] and MD
simulations [90] (and incidentally again highlights the low-r differences in the MD- and RMC-
generated partial radial distribution functions of the conducting ion—in this case, gAg−Ag(r)).
This shows that descriptions of the local structure associated with ionic conduction, even for
disordered materials with simple rock-salt structures and small number of defects, are hard to
characterize robustly.

AgI also has a rock-salt structured phase at pressures above ∼0.4 GPa [91]. The ionic
conductivity of this phase also increases anomalously with increasing temperature, although
it does begin to saturate just before transforming into the α-AgI phase [92]. Diffraction
measurements show that this superionic region of the rock-salt phase corresponds to ∼30%
cation occupation of tetrahedral sites (see figure 9). The high ionic conduction, together with
a saturation of interstitial defects and an anomalous lattice expansion, confirm that rock-salt
structured AgI has a type II superionic transition [91]. This is the only silver or copper halide
material which displays a clear type II superionic transition and as such it has similarities
with the undoped fluorite superionic materials such as β-PbF2. Some have argued that a
superionic transition would occur in AgBr and AgCl at high temperatures; only melting of
the anion sublattice interrupts it [93]. Others have been able to characterize the order of
the superionic (and melting) transitions on the basis of the defect–defect interactions in the
different materials [94].

5.2.4. The silver chalcogenide superionic conductors. The silver chalcogenides (Ag2S,
Ag2Se and Ag2Te) also have superionic phases which are similar to the silver and copper
binary halides except that there are twice as many cations to fill the available voids in the
anion sublattices. All three compounds have α-AgI-like bcc superionic phases and Ag2S and
Ag2Te also have fcc superionic phases [19]. Unusually, and even though the bcc phase of
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Ag2Te occurs at higher temperatures than its fcc phase (in common with the case for the
copper and silver halides), the bcc phase of Ag2S occurs at lower temperatures than its fcc
phase [95]. To date, this difference has not been explained adequately. The increased number
of cations per anion means that local cation ordering is more likely and octahedral sites are
more likely to be occupied in addition to the tetrahedral sites. This local ordering results in
structured diffuse scattering, measured for β-Ag2S using x-ray diffraction [96] and elastic
neutron scattering [97]. Diffuse disc-like features are observed at q ∼ (0.6, 0, 0) away from
Bragg positions with a strong peak at Q = (1.6, 1, 0). The widths of this feature in reciprocal
space were used to construct a static model of the cation local ordering on distinct tetrahedral
sites [96]. This was later countered by the neutron measurements, which demonstrated that
the diffuse scattering was almost entirely quasielastic in origin and hence must originate from
dynamic, rather than static, correlations [97]. These measurements were supported by a
number of MD simulations using RVP potentials during the 1980s, the most comprehensive of
which was on Ag2Se [82]. The simulation results were compared with the diffuse scattering
experiments on Ag2S reflecting the close similarity between these phases. More recently
there has been an ab initio MD simulation study of Ag2Se, largely concentrating on the liquid
state [98].

The recent experimental work on the silver chalcogenides has concentrated on powdered
samples, including total scattering measurements on Ag2Te, analysed using RMC [83] and
total scattering with neutron isotopic substitution on Ag2Se [84] (see also related work on
liquid Ag2Se [99] and Ag2Te [36]). The former measured total scattering structure factors,
i(Q) (equation (3)), for each of the three phases of Ag2Te at or above room temperature. There
were some inconsistencies in the details of the average structures obtained from the Rietveld
refinements and RMC models, probably due to the basic implementation of the RMC method
used (the Bragg intensities were not considered) and the restrictive nature of the Rietveld-
refined average split-site model. Of particular note is the nature of the cation occupation of
the octahedral sites in the fcc α-phase (space group Fm3̄m). Both techniques find evidence of
significant occupation of the octahedral cavity, in contrast to the less cation-denseα-CuI phase.
However, Rietveld results suggest that the cations reside off-centre from the ( 1

2
1
2

1
2 ) octahedral

site and instead are distributed between (xxx) positions, with x ∼ 0.4. The RMC models do
not make this distinction, and the average density peaks at the site centre (i.e. ( 1

2
1
2

1
2 )).

The ion distribution within the tetrahedral and octahedral sites has also been investigated
for the isostructural fcc phase of α-Ag2S [95]. This is the highest-temperature phase of Ag2S
and the powder neutron diffraction data measured at 929 K only show six clear Bragg peaks.
Rietveld refinement of the data show occupation of both tetrahedral and octahedral sites, but
the data are not good enough to distinguish clearly between models with cations located at
( 1

2
1
2

1
2 ) (χ2 = 1.10) or distributed over (xxx) positions, with x ∼ 0.4 (χ2 = 1.08). However,

MaxEnt Fourier reconstructions of the ion density show that the distribution, although peaking
at ( 1

2
1
2

1
2 ), is anisotropic and spreads significantly in 〈111〉 directions (figure 10(a)). MD

simulations, using RVP potentials determined previously [100], support this cation distribution
(figure 10(b)).

There is better consensus concerning the nature of the disorder in the highest-temperature
bcc γ -phase of Ag2Te, which is found to be analogous to α-AgI. Both Reitveld and RMC
average models place most cation density in the tetragonal sites and conduction takes place
between tetrahedral sites via trigonal sites in 〈110〉-type directions, with little occupation of
the octahedral sites. This is contrasted with what is found in bcc β-Ag2S and α-Ag2Se,
where octahedral occupation is found, albeit at much lower temperatures and with the
observation that the octahedral occupation decreases with increased temperature. MaxEnt
Fourier reconstructions of the ionic density in β-Ag2S show the cation density at the ( 1

2
1
4 0)
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Figure 10. Average density distributions within the fcc α-Ag2S (upper plots) and bcc β-Ag2S unit
cells (lower plots). MaxEnt Fourier reconstructions and results from MD simulations are shown on
the left- and right-hand sides, respectively. Temperatures are (a) 929(2) K, (b) 900 K, (c) 558(2) K
and (d) 550 K (from [95]).

tetrahedral sites elongated in 〈100〉 directions towards neighbouring ( 1
2

1
2 0) octahedral sites,

but the octahedral site cation density is lower than that of nearby trigonal (xx0) positions
(figure 10(c)). However, with x ∼ 0.45, this is very close to the octahedral site [95]. These
results have also been compared with the density distribution obtained from MD simulations
of β-Ag2S (figure 10(d)).

The RMC-generated partial radial distribution functions,gi j(r), for bcc γ -Ag2Te at 1073 K
may be compared with those obtained for bcc α-Ag2Se at 1073 K using neutron isotopic
substitution measurements [84] and at 435 K using MD simulations [82]. In a neutron isotopic
substitution measurement, total scattering measurements are made on samples with the same
chemical composition, but different isotopic composition. Provided that isotopic enrichment
of the sample is practically possible and that there is enough contrast between the neutron
scattering lengths of the different isotopes, the data may be used to separate the contributions
from the different pair correlations experimentally. The resulting partial radial distribution
functions, gi j(r), are independent of any modelling or simulation. In this measurement [99],
three different isotopically labelled samples were used, 107Ag2

76Se, 109Ag2
NSe and NAg2

76Se,
where N refers to the element with natural isotopic abundance. The corrected total scattering
structure factors, i(Q), are composed of weighted sums of the Faber–Ziman partial structure
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factors, Ai j(Q) [35], the weighting being dependent on the isotopic composition and relative
abundance of the components. In this particular case,
107
N i(Q) = 0.2594(19)[AAgAg(Q) − 1] + 0.2706(14)[AAgSe(Q) − 1]

+ 0.0706(1)[ASeSe(Q) − 1]
109
76 i(Q) = 0.0780(8)[AAgAg(Q) − 1] + 0.2272(25)[AAgSe(Q) − 1]

+ 0.1654(19)[ASeSe(Q) − 1]
N
76i(Q) = 0.1559(3)[AAgAg(Q) − 1] + 0.3211(27)[AAgSe(Q) − 1]

+ 0.1654(19)[ASeSe(Q) − 1]

(10)

where X
Y i(Q) refers to the total scattering structure factor of X Ag2

Y Se. Matrix inversion of the
above equations gives Ai j(Q) in terms of the X

Y i(Q) and Fourier transformation of the Ai j(Q)

gives the partial radial distribution functions, gi j(r).
The different gi j(r) are shown in figure 11. There is clearly good agreement between

the RMC-generated results for γ -Ag2Te and the isotopic substitution results for α-Ag2Se,
and reasonable agreement with the MD results for α-Ag2Se, although again there is some
discrepancy in the lowest-r peak in gAgAg(r). It has also been observed that there is a strong
similarity between the gi j(r) (or Ai j(Q)) for the high-temperature superionic crystalline phase
and for the liquid just above the melting point, particularly for gAgAg(r) [36]. This suggests that
common local structural arrangements exist in the disordered solid and liquid phases and further
emphasizes the ‘liquid-like’ nature of the disorder associated with superionic conduction in
these systems.

5.2.5. Other doped copper and silver superionic conductors. Since chemical doping has
been found to improve the superionic properties at lower temperatures, there have been many
investigations of doped materials based on the AgI or CuI parent compounds. The structures
of the most promising have also been investigated in detail. Here we shall only discuss three
basic systems, Ag3SI, A4MI5 (A = Ag or Cu, M = Rb or K) and Ag2MI4 (M = Hg or Pb).
This is by no means an exhaustive list, but will serve to illustrate some of the structural issues
associated with chemical doping.

5.2.5a. Silver sulphur iodide, Ag3SI. Ag3SI, with 1 1
2 cations per anion, has a cation density

midway between the silver halide and silver chalcogenide superionic conductors. It possess
three distinct phases. The low-temperature rhombohedral γ -phase transforms at T = 157 K
to the primitive cubic β-phase. This phase in turn transforms to the bcc α-phase at T = 519 K.
Furthermore, the high-temperature α-phase may be quenched to room temperature and below
by fast cooling, to a phase denoted α∗-Ag3SI. The conductivity changes by many orders
of magnitude within the γ -phase, with values of σ ∼ 10−8 �−1 cm−1 at 100 K and
σ ∼ 10−5 �−1 cm−1 just below the γ –β phase transition, Tγ−β [101]. There is a small
fourfold increase in σ at Tγ−β , above which the increase with temperature is more gradual,
achieving a value of σ ∼ 10−2 �−1 cm−1 at room temperature. This compares with a value
of σ ∼ 0.3 �−1 cm−1 for α∗-Ag3SI at room temperature [102]. The conductivity only
increases slowly within the α-phase. The conductivity of Ag3SI therefore changes by more
than eight orders of magnitude between 100 and 519 K and possesses two phases at room
temperature, one stable and one metastable, with good and very good ionic conductivity,
respectively.

The significant structural disordering mechanisms associated with such a large change in
conductivity have been investigated using Rietveld and total scattering methods [101, 103]. The
structures are summarized in figure 12. In the α-Ag3SI phase the anions are fully disordered
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Figure 11. A comparison of the partial radial distribution functions for various bcc silver
chalcogenides. Thin, full, smooth curves correspond to α-Ag2Se at T = 1073 K (neutron isotopic
substitution [84]); thick, full curves to γ -Ag2Te at T = 1073 K (RMC refinement of neutron total
scattering data [83]); dashed curves to α-Ag2Se at T = 435K (MD simulation [82]). Each data set
has been scaled to the first peak in the ganion−anion (r) to account for density differences.

between 2(a) sites at (000) and ( 1
2

1
2

1
2 ) on the bcc Im3̄m lattice. This disorder is retained on

quenching to α∗-Ag3SI, although the diffuse scattering suggests that some short-range anion
ordering takes place, presumably dependent on cooling rates. In contrast, the β-phase has
a fully ordered anion lattice, with S2− in 1(a) sites at (000) and I− in 1(b) sites at ( 1

2
1
2

1
2 ) in

the primitive cubic space group Pm3̄m. This ordered anion sublattice then distorts to form
the rhombohedral structure of γ -Ag3SI with the S2− ion moving from (000) along the body
diagonal to (xxx) with x ∼ 0.04. The key to understanding the ionic conductivity rests on
the way that the cations populate these distinct anion sublattices. In the α-phase, the cation
density is distributed between the 24(h) (xx0) sites with x ∼ 3/8. The atomic displacement
parameters are highly anisotropic such that the distribution appears as a disc centred on each
octahedral site of the structure (although not peaking at the site) and elongated in the directions
perpendicular to the short cation–anion contact. The anion ordering in the β-phase results in
the cations occupying half the number of sites, i.e. 12(h) ( 1

2 y0) sites with y ∼ 0.9. Again
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Figure 12. Schematic representations of the crystal structures of three phases of Ag3 SI (after [101]).
Each plot shows the unit cell and the network of tetrahedral sites within the structure. (a) γ -Ag3SI
at T = 10(1) K (the alternative Ag2 sites which become ∼10% occupied just below the γ –β

transition are shown as open circles); (b) β-Ag3SI at T = 297(2) K; (c) α-Ag3SI at T = 569(2) K.

this is accompanied by anisotropic atom displacement parameters to give a similar apparent
distribution to that of α-Ag3SI, but only occupying locations around the octahedral sites with
short S2−–Ag+ and long I−–Ag+ contacts. In both these phases all the cations are mobile,
resulting in high values of ionic conductivity. The conductivity is higher in the α-phase than
the β-phase because there are more sites available per cation and the sites are closer together.

The β–γ transition is a little more subtle. Specific heat measurements show that
this transition has a λ-type anomaly, indicative of a second-order phase transition [104].
This is inconsistent with the discontinuous changes in the lattice expansion and ionic
conductivity [101]. Diffraction measurements [103] show that on cooling through Tγ−β the
cations order onto two sets of 3(b) (xyz) sites in space group R3. The majority are on site Ag1
(∼0.5, ∼0.9, ∼0) with around 10% on Ag2 (∼0.5, ∼0, ∼0.9). Further cooling increases the
distortion of the anion lattice and fully orders the cations onto the Ag1 site at low temperature.
The phase transition therefore occurs when the cations preferentially occupy six of the twelve
possible cation sites in the β-phase, thus destabilizing the anion lattice; further cooling then
gradually orders the cations onto three of the six cation sites that were initially occupied just
below Tγ−β . The conductivity within this phase increases rapidly with increasing temperature
from a low value as a result of the increase of available conducting cations within the lattice. In
summary, the cations begin fully ordered in the γ -phase at low temperature (one site/cation).
On heating, this increases to two sites/cation (γ -phase, high temperature) to four sites/cation (β-
phase) and finally to eight sites/cation (α-phase). The ionic conductivity increases accordingly.

5.2.5b. Silver rubidium iodide, RbAg4I5, and related materials. Isovalent substitution of Rb+

for Ag+ in AgI produces RbAg4I5, which is a superionic conductor at room temperature, with
σ = 0.21 �−1 cm−1. It is also isostructural with KAg4I5 and KCu4I5 [10]. KAg4I5 is stable
above T ∼ 311 K and metastable for a time at room temperature in a dry atmosphere, with a
room temperature conductivity of σ = 0.08 �−1 cm−1. KCu4I5 is stable above T ∼ 530 K.
Recent powder neutron diffraction [10] shows that all three are cubic (a ∼ 11 Å), with the
anions adopting the β-Mn structure. Their structures may be described in space group P4132
(or its enantiomorph P4332). The distorted octahedral cavities within the anion lattice are
occupied by the non-diffusing monovalent dopant cation (Rb+ or K+) and the Ag+ ions are
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Figure 13. A projection down (001) of the average structure of RbAg4I5. Of the five proposed
sites for Ag+, Ag1 (black), Ag2 (grey) are significantly occupied, with a small occupancy of Ag3
(white). Bold lines indicate the infinite non-intersecting chains of · · · Ag1–Ag2–Ag1 · · · sites
parallel to each of the cubic axes; medium lines show the likely route for conductivity between the
linear channels; thin lines correspond to an alternative interchannel route via Ag3 sites (from [10]).

distributed between the three distorted tetrahedral cavities, although they preferentially occupy
the tetrahedral sites labelled Ag1 and Ag2 over those labelled Ag3 in figure 13. The structure
therefore contains one-dimensional channels of linked Ag1 and Ag2 tetrahedral cavities along
the three 〈100〉 directions (see figure 13).

In order to help assess the likely conduction pathways within this structure, the MaxEnt
Fourier difference method has been used to determine the most probable location of the Ag+

ions with respect to the known I− and Rb+ (or K+) positions. A section (0.45 � z � 0.55)
of the MaxEnt reconstruction of the structure is shown in figure 14. This clearly shows Ag+

ion density linking Ag1 and Ag2 sites in the one-dimensional channel running along the [100]
direction at y ∼ 0.75. In addition, there is significant density joining this channel with
the two Ag1 sites at (0.22, 0.95, 0.48) and (0.72, 0.55, 0.52). These sites are parts of two
channels running perpendicular to the section shown in figure 14, indicating that a network
of linked one-dimensional channels form the conductivity path in RbAg4I5, KAg4I5 and
KCu4I5. The conducting channels have also been investigated using bond valence summation
mismatches [17]. There is strong similarity in the form of the conduction channels generated
by the MaxEnt Fourier difference and bond valence summation methods. However, the
former emphasizes the channels directly linking the sites that are occupied on average, and the
latter highlights the unoccupied sites that also have low bond valence mismatch as possible
conduction routes.

5.2.5c. Ag2HgI4 and related materials. Finally in this section, the effects of doping AgI and
CuI with aliovalent Hg2+ and Pb2+ to produce the compounds Ag2HgI4, Cu2HgI4, Ag2PbI4 and
Ag4PbI6 are compared. For this discussion the descriptions given in recent neutron diffraction
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Figure 14. A (001) section through the maximum entropy Fourier reconstruction of the average
density in RbAg4I5, with 0.45 � z � 0.55. The conduction channel along one of the
· · · Ag1(circles)–Ag2(squares)–Ag1 · · · chains is shown by the dotted curve at y ∼ 3/4. The
density between the Ag1 sites (at, for example, 0.72, 0.55, 0.52 and 0.77, 0.70, 0.47) indicates
that Ag+ may hop between the channels via this route. The Ag3 sites (hexagons) do not appear to
contribute to any conduction pathway (see [10] for details). Sites labelled ∼I2, ∼Rb and ∼Ag3
are just outside this (001) section.

work [105–107] are followed. The two Hg2+-doped compounds transform at 326 K (Ag2HgI4)
or 338 K (Cu2HgI4) from their different tetragonal low-temperature structures to superionic
α-phases, both with cation-deficient zinc-blende structures. The cations in the α-phases are
distributed over the 4(c) sites at ( 1

4
1
4

1
4 ) with the anions in 4(a) sites at (000) in space group

F 4̄3m. The cations do not appear to disorder significantly onto the other 4(d) tetrahedral
sites at ( 3

4
3
4

3
4 ) or the octahedral sites at 4(b) ( 1

2
1
2

1
2 ). Hence the conduction is reasonably high

merely because of the excess number of 4(c) sites per cation. At still higher temperatures, a
wurtzite structured δ-phase is stabilized (above ∼410 and ∼578 K for Ag2HgI4 and Cu2HgI4,
respectively). This structure is also disordered, but in contrast with the similar β-CuI structure,
the anion sublattice is largely undistorted and the cation disorder suggests that ionic conduction
takes place via octahedral voids. At temperatures above ∼445 K, a bcc ε-phase of Ag2HgI4

is formed with the α-AgI structure and little occupation of octahedral sites. A phase with this
structure is not found at ambient pressure in Cu2HgI4.

AgI and PbI2 combine at high temperatures to form a stable superionic phase for mixtures
of composition (AgI)x–(PbI2)1−x with 2/3 > x > 4/5. The structure of Ag4PbI6 (x = 4/5)
and Ag2PbI4 (x = 2/3) is fcc in space group Fm3̄m, above ∼400 and ∼420 K, respectively. In
both compounds, the cations (Ag+, Pb2+ plus vacancies, in different proportions) are principally
on 4(b) octahedral sites at ( 1

2
1
2

1
2 ), with only a small number of cations in the tetrahedral 8(c)

sites at ( 1
4

1
4

1
4 ). This is of note because it is very unusual for an ordered silver halide compound

to have octahedrally coordinated silver ions, let alone for a disordered superionic phase.
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Figure 15. A schematic representation of the two-dimensional conduction layer in β-alumina
(after [113]) showing the bridging oxygen positions (large open circles) and a variety of possible
locations for the conducting cation, labelled (as in the existing literature) BR—Beevers–Ross;
aBR—anti-Beevers–Ross; mO—mid-oxygen; A—A-site. The left-hand side of the figure also
shows the average density of cations from a MD simulation of a non-stoichiometric β-alumina at
T = 1500 K, showing the preference for BR sites and A sites around aBR sites (see [113] for
details).

In both the Hg2+- and Pb2+-doped compounds, doping appears to favour the fcc (or hcp)
lattice over the bcc lattice (the bcc structure is only observed in ε-Ag2HgI4 and then at higher
temperatures than for undoped α-AgI). This is presumably because the Hg2+ and Pb2+ cations
can adopt their preferred regular tetrahedral and octahedral coordinations, respectively, within
the fcc structure. In contrast, in the bcc lattice the tetrahedral and octahedral sites are distorted.
The more surprising result is that the Ag+ cations also adopt an unusual octahedral environment
in fcc AgxPb1−x I2−x , suggesting that the minority dopant is imposing its favoured coordination
on the structure. This is similar to the suggestions about the isovalent cation doping playing a
‘determinative structural role’ in Ag4RbI5; dopants attempt to adopt their higher-coordination
environments and, in the process, modify the anion sublattice to increase the degree of face
sharing of the anion tetrahedra [108]. As a consequence, the conductivity of Ag4RbI5 is also
enhanced. This argument does not completely hold for these aliovalent-doped compounds.
Doping does enhance the conductivity (the fcc structured doped phases achieve higher ionic
conductivities than the related γ -AgI or γ -CuI undoped phases) and the coordination is
significantly modified by the Pb2+ dopants. However, the resultant doped fcc (or equivalent
hcp) structures are retained to higher temperatures and, if compared to the undoped bcc α-AgI
structure, actually have fewer face-sharing tetrahedra.

5.3. Alkali metal superionic conductors

This section concerns a number of different types of superionic conductor. The materials
in each of the first two sections 5.3.1 and 5.3.2, although they predominantly refer to alkali
metal ionic conductors, are considered together because they have a common dimensionality
associated with the ionic conduction. The final two sections 5.3.3 and 5.3.4 describe two
more families of alkali metal conductors, typified by the high-temperature superionic phase of
Li2SO4 and those associated with the so-called NASICON acronym.

5.3.1. Two-dimensional superionic conductors. The β- and β ′′-aluminas typify two-
dimensional type III superionic conductors and they have been particularly well studied because
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Figure 16. Trajectories of sodium ions in the conduction plane of non-stoichiometric β-alumina
during a MD simulation [113]. (a) A 100 ps run at 300 K; (b) 100 ps at 700 K; (c) 50 ps at 1500 K.
Open circles and squares denote interstitial oxygens and their neighbouring BR and aBR sites,
respectively. Arrows in (a) show a series of correlated jumps. See [113] for further details.

they show high ionic conductivity at room temperature. Their structures are composed of two
parts, a thick layer of non-conducting atoms in a spinel arrangement (the ‘spinel block’)
and a loosely packed layer of conducting ions and bridging oxygen atoms forming a two-
dimensional hexagonal lattice (the ‘conduction plane’); see figure 15. The general formula is
(Al11−yMgyO16)[M1+x+yO1+x/2] where M is the conducting alkali ion and the round and square
brackets correspond to the atoms in the spinel block and conduction plane, respectively [109].
The difference between the β- and β ′′-alumina structures is that in the former the conduction
plane lies on a mirror plane and is strictly planar, whereas in the latter the conduction plane is
not constrained by symmetry and need not be planar.

The disorder in the two-dimensional conduction plane gives rise to strong diffuse
scattering features in x-ray diffraction patterns [110–112]. These have a rod-like form
perpendicular to the conduction planes, the intensities of which are modulated due to
correlations between the conducting ions and the neighbouring ions in the spinel blocks.
More recently, research has concentrated on understanding the conducting ion trajectories
(e.g. using MD simulations [113]; figure 16), interpretation of the mixed alkali effect, which
gives rise to non-linear behaviour in the conductivity on mixing two types of conducting
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Figure 17. The hollandite structure, showing how the open framework of (B/C)O6 octahedra
results in one-dimensional conduction channels parallel to the c-axis.

ion (e.g. using MC simulations [114]) and local probe investigations of structural detail
(e.g. XANES investigations of the local environment of the Al ions in the spinel blocks [109]).
There have also been studies of the isostructural compound K+ β-ferrite aiming to understand
the structural disorder and magnetism in these compounds (see, for example, [115]).

5.3.2. One-dimensional superionic conductors. Materials with the hollandite structure typify
one-dimensional type III superionic conductors. They have received increased interest recently
as possible anodes for lithium-ion batteries and because of the importance of α-MnO2, whose
structure is related to that of hollandite. The general chemical formula for hollandite is
A2x ByC8−yO16 where the charges a, b and c on the A, B and C cations are related by
xa + yb + (8 − y)c = 32 with a = 1 or 2, b = 1, 2 or 3 and c = 4. The hollandite
structure consists of a framework of (B/C)O6 octahedra, connected in such a way as to produce
one-dimensional channels which are composed of a linear sequence of larger cavities in the
structure (see figure 17). The conducting A cations therefore may move within these channels,
which have a periodic variation in width, corresponding to the (wider) cavities and (narrower)
connecting regions, sometimes known as ‘bottlenecks’. The natural potassium hollandite
mineral priderite, K1.54Mg0.77Ti7.23O16, typifies the structure and has been much studied [116].

The majority of studies of the structural disorder are therefore concerned with the
distribution of the conducting ions within these channels and the possible ordering between
them. The characteristic x-ray scattering signature for this would be composed of superlattice
reflections (when complete ordering is observed) and/or strong diffuse streaks perpendicular to
the tunnel direction (when only partial ordering is observed). Much of the x-ray and electron
diffraction work is referenced in [116–118] and describes the interpretation of the scattering in
terms of intrachannel and interchannel correlations of the conducting cations. More recently, a
series of MD simulations have been used to investigate various aspects of the local arrangements
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within hollandite [119], including the composition [120] and temperature [121] dependence.
The lattermost study, looking at the behaviour of sodium ions in a chromium titanium hollandite
with approximate composition Na1.7Cr1.7Ti6.3O16, maps out the distribution of potassium ions
within the channels as a function of temperature and assesses the collective nature of the ionic
conduction.

5.3.3. Alkali metal sulphates. The interest in Li2SO4 and related materials stems from the
role the sulphate groups may or may not play in the mechanism for conduction. The basic
structure for the fcc superionic phase has the conducting cations on 8c ( 1

4
1
4

1
4 ) sites and the

sulphur atom of the SO2−
4 anion on 4a (000) sites in space group Fm3̄m. The oxygen ions are

rotationally disordered about the sulphur ion and this, combined with the highly disordered
cation sublattice, results in substantial diffuse scattering and a very small number of observable
Bragg reflections (for example, 20 reflections were observed in a single-crystal study [9]). The
debate in the literature concerns whether the ionic diffusion is aided by, or independent of, the
rotational motion of the SO4 units (compare [122] with [123]). RMC models have also been
produced for superionic Li2SO4 and LiNaSO4 from total neutron scattering measurements of
powdered samples [124]. They concluded that there was evidence for both types of mechanism.
The modelling has recently been extended to investigate the proton conductor, CsDSO4, which
shows much stronger correlation between the proton diffusion and sulphate rotation [125].

5.3.4. NASICON and related materials. NaZr2(PO4)3 typifies a very broad range of open
network structures of general formula Mx A2(XO4)3 which are composed of corner-linked
octahedral AO6 and tetrahedral XO4 units [126]. The term NASICON (Na superionic
conductor) was coined with the discovery that Na3Zr2(SiO4)2(PO4) possessed particularly high
ionic conductivity (0.2 �−1 cm−1 at 573 K) [127, 128]. The term LISICON refers to a similar
acronym and is typified by (for example) Li(2+2x)Zn(1−x)GeO4 [129]. Much work was carried
out on these materials in the early 1980s (see e.g. articles in [130]), and they remain topical
as possible cathode materials for lithium-ion batteries [131]. One of the major difficulties
in this field is reproducibility between different samples, since the physical properties are
crucially dependent on preparation methods and thermal history of the sample. Furthermore,
the samples have a strong tendency to form polytypes, and each family has a large range of
possible compositions.

With this in mind, and as is usual for superionic conductors, the challenge is to identify the
locations of, and conducting pathway for, the conducting ions (made harder by the low x-ray
scattering from lithium ions). Early x-ray single-crystal diffraction measurements showed that
the alkali ions in the average structure possessed very large anisotropic atom displacement
parameters [132]. Neutron powder diffraction on Na(1+x)Zr2(SiO4)x(PO4)(3−x) showed that
high ionic conductivities correspond to those compositions whose network structure produced
the least constrictive bottlenecks between occupied sodium sites, with the highest conductivity
corresponding to x = 2 [133, 134]. This is further highlighted at the monoclinic-to-hexagonal
phase transition at ∼423 K. Here there is a significant increase in conductivity in the high-
temperature hexagonal phase, with wider bottlenecks than in the low-temperature structure.
It is interesting that these changes in bottleneck size are accomplished with only very small
changes in the displacements of the atoms in the network structure.

Recently there have been a series of high-resolution neutron powder diffraction
experiments on various polymorphs of LiZr2(PO4)3 [135–137]. Of the four polymorphs
studied, α-LiZr2(PO4)3 (stable above∼333 K) forms the undistorted rhombohedralNASICON
structure. Below ∼333 K, α-LiZr2(PO4)3 transforms to the triclinic α′-LiZr2(PO4)3 phase.
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The equivalent β-(monoclinic) and β ′-(orthorhombic) phases, with the Fe2(SO4)3 structure,
have also been studied [137]. Of these, the α-phase has the highest ionic conductivity
(σ ∼ 10−2 �−1 cm−1 at 573 K, compared with σ ∼ 5×10−4 �−1 cm−1 for the β-phase at the
same temperature), and the β ′-phase has the lowest (σ ∼ 10−10 �−1 cm−1 at room temperature,
compared with σ ∼ 5 × 10−8 �−1 cm−1 for the α′-phase at the same temperature). However,
even within the α-phase there is a large change in conductivity from ∼10−8 �−1 cm−1 just
above the α′–α phase transition and rising steeply with increased temperature until an order-
of-magnitude change at 550 K to a superionic regime occurs [138]. The neutron powder
diffraction measurements show that these differences in ionic conductivity are due to the
different numbers of sites available to the lithium ions. This view is supported by recent
MD simulations [139] which not only show that the high-temperature transition within the α-
phase is due to a disordering of Li ions between two distinct sites, but also identifies a possible
conduction pathway via an additional site midway between the two sites. This is also consistent
with the proposed conduction mechanism in Na3Sc2(PO4)3 [140]. Pathways in the general
NASICON framework have also been investigated using bond valence mismatches [141].
Most probable pathways are identified according to those that have the lowest bond valence
mismatch, and the highest value of bond valence along these pathways is related to the ionic
conductivity and the angles within the network structure. Hence the structure within any given
series of NASICON materials could be used to predict the expected ionic conductivity. To
date, though, there have not been any structural investigations of these materials using diffuse
scattering, presumably because of their structural complexity and difficulties in consistent
sample preparation.

It is also interesting to note that zirconia-deficient stoichiometries such as
Na(1+x)Zr(2−x/3)Six P(3−x)O(12−2x/3) (or Na(1+x)Zr2(SiO4)x(PO4)(3−x)–(ZrO2)x/3) having 0 �
x � 3 produce a related glassy material, termed NASIGLAS, which has high ionic conductivity
for a range of compositions, 1.6 � x � 3 (see for example [142] and references therein).

5.4. Amorphous superionic conductors

Understanding the superionic process within an amorphous structure has proved a particular
challenge. The fundamental problem is how to extract detailed structural information from
aperiodic multi-component materials from total scattering data. Most of the recent advances
have therefore evolved from neutron isotopic substitution experiments and the development
of the RMC method which, when sensibly applied, can extract structural information from
limited data. X-ray spectroscopic techniques, such as EXAFS, have also played an important
part, since they can probe the local environment of dopant atoms.

The total scattering measurement from an n-component material is composed of a weighted
sum of 1

2 n(n+1)partial structure factors (see [35]). In favourable circumstances,measurements
of a series of chemically identical samples with different isotopes can be used to separate the
contributions from the different partial structure factors (see the work on Ag2Se, section 5.2.4).
However, for even the chemically simple superionic glasses, such as AgPS3 [143], six distinct
isotopic substitution neutron total scattering measurements would be needed for a complete
separation. This is rarely possible in practice, since isotopes with significantly different neutron
scattering lengths only exist in large enough quantities for a small number of elements.
Fortunately silver and copper do have suitable isotopes (107Ag (b = 7.505 fm) and 109Ag
(b = 4.21 fm), 63Cu (b = 6.4 fm) and 65Cu (b = 10.6 fm), respectively) and, since silver and
copper are frequently the conducting ion in superionic glasses, some progress may be made.

In [143], three separate neutron total scattering measurements of AgPS3 were made, using
107AgPS3, NAgPS3 and 109AgPS3 samples (where N signifies the natural isotopic abundance).
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A second-order difference method [144] was then used to extract three sets of correlation
functions, AAg−Ag(Q), the partial structure factor for Ag–Ag correlations, and two sets of
composite functions, �Ag−P/S(Q) and �P/S−P/S(Q), which contain Ag–P/S and P/S–P/S
correlations, respectively. There is a degree of overdetermination in this method (e.g. the
three �Ag−P/S(Q) are related by a known scale factor) and this can be used to check the
reliability of the separation. The Fourier transforms of the above functions were then used to
investigate the nature of the ionic conduction and the relationship between glassy AgPS3 and
crystalline analogues. It was concluded that the local structure of the glass was significantly
different from that of the corresponding crystal and that the silver ions were widely distributed
within the glassy matrix over a large number of sites.

There have been a number of other similar studies using neutron total scattering with
isotopic substitution. These include ([Ag,Cu]2Se)0.25(AsSe)0.75 [144]; (Ag2S)x(GeS2)1−x ,
with x = 0.3, 0.4 and 0.5 [145, 146]; (Li2S)0.5(SiS2)0.5 using NLi and 6Li which have negative
and positive neutron scattering lengths, respectively [147]; (Ag2Te)0.5(As2Te3)0.5 [148]; and
(CuI)0.6(Sb2Se3)0.4 [149]. The initial work on (Ag2S)0.5(GeS2)0.5 [145] additionally used RMC
modelling to generate three-dimensional models of the structure from (NAg2S)0.5(GeS2)0.5 and
compared the results with those from the isotopically enriched samples.

RMC modelling has been used extensively on another superionic glassy system,
(AgI)x(AgPO3)1−x [150, 151]. Here, instead of using isotopic substitution methods to separate
the different pair correlation functions, the three-dimensional RMC models are constructed on
the basis of a variety of structural information. Neutron and x-ray total scattering, together
with Ag K-edge and I LIII-edge EXAFS, were carried out on samples with seven different
compositions between x = 0 and 0.5. A three-dimensional structural model was initially
created of chains of PO4 tetrahedra, each having two bridging and two non-bridging oxygen
atoms. The PO4 chain structure was then interspersed with Ag and I atoms to give the
required chemical composition and overall density. This structure was then refined with RMC
modelling using the four measured data sets and whilst maintaining the initial P–O bonding.
The agreement is shown in figure 18. Extremely good fits were obtained to the neutron and
x-ray total scattering data and reasonable fits to the EXAFS patterns.

Two important conclusions were reached. First, the so-called first sharp diffraction
peak (FSDP) which occurs at Q ∼ 0.7 Å−1 is more pronounced in the neutron diffraction
pattern than in the x-ray diffraction. The neutron FSDP had been ascribed earlier to AgI
clusters in the glass (e.g. [152]). However, since the x-ray diffraction is dominated by Ag and I
scattering and the FSDP in the x-ray pattern is small, it is more likely that the FSDP arises from
intermediate-range order of the PO4 chains. In particular, it was found that the reduction of the
chain density, as the AgI dopant concentration increases, is the most significant contribution to
the increase in intensity of the FSDP. (The FSDP has been investigated in greater detail recently
for a number of superionic glasses using neutron total scattering, small-angle neutron scattering
and RMC modelling [153].) Secondly, the three-dimensional structural models are analysed
to determine a structural basis for the ionic conductivity. By investigating the free volume in
the model available to the silver ions, conducting pathways within the model were mapped out.
A percolation transition was observed at around x = 0.3; below x = 0.3, the silver ions exist
in small non-connecting pathways; above x = 0.3 the model has one fully connected pathway
containing the majority of silver ions. This is consistent with the observed ionic conductivity,
which increases with increasing AgI dopant. The results are summarized qualitatively by
the concept of a ‘modified random network’ [154] whereby a continuous random ‘network’
glass structure is modified by the introduction of additional AgI ‘salt’ dopant. At low AgI
concentrations, the silver ions largely bond with the non-bridging oxygen atoms in the PO4

network and the structure is maintained. As the AgI concentration increases, the PO4 chains
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Figure 18. Experimental structure factors (full curve) and RMC fits (dashed curve) for
(AgI)x (AgPO3)1−x superionic glasses. (a) Neutron diffraction, (b) x-ray diffraction and (c) Ag K-
edge EXAFS with x = 0.0, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5. (d) I LIII-edge EXAFS with
x = 0.1, 0.2, 0.3, 0.4 and 0.5. (Compositions as listed are plotted bottom to top and offset for
clarity [151].)

are forced further apart, the conductivity increases, but the connectivity eventually breaks
and the glass crystallizes. This free volume argument for ionic conductivity in amorphous
materials has been broadened to include other systems and discussed in greater detail in a later
work [155].

RMC models have also been used in conjunction with bond valence summations for many
superionic glasses with mobile silver ions, including (AgI)0.75(Ag2MO4)0.25, with M = W
and Mo; (AgI)0.6(AgxO–xB2O3)0.4, with x = 1 and 2; (AgI)x(AgPO3)1−x with x = 0, 0.1,
0.3 and 0.5; the low-conducting Ag2O–nB2O3 with n = 2 and 4 [16, 17]. Here, the RMC
modelling includes an additional ‘soft constraint’ to restrict the silver ions to locations within
the models with suitable bond valences, thus yielding chemically reasonable structural models
in good agreement with the available structural data. The RMC-generated models are then
analysed to determine the bond valence sum mismatch for a hypothetical silver ion placed
in small volume elements throughout the volume of the models. Those volume elements
whose mismatch was below a certain value were considered accessible to silver ions and
hence could form part of a conduction pathway. Figure 19 shows a section of an RMC-
generated configuration of amorphous (AgI)0.6(Ag2O–2B2O3)0.4, together with a silver-ion
bond valence isosurface calculated from the atom positions in the configuration. If a pathway
extends across the model, then, through periodic boundary conditions, it can contribute to
long-range ionic conduction. The volume fraction, F , of these conduction pathways is related
to the experimental dc conductivity, σ , via the relationship log(σ T ) ∝ 3

√
F . The pathway

volume fraction is distinct from the free volume fraction, since, for example, the bond valence
sum mismatch would only include the edges of large voids within the structure. It is therefore
a refinement of the earlier free volume analysis [150] and should be more representative of
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Figure 19. A 5 Å thick section through an RMC-generated model of (AgI)0.6–(Ag2O–2B2O3)0.4
superionic glass [50]. Superimposed on the model is an isosurface corresponding to the likely
conduction pathway for silver ions, as determined from a bond valence mismatch calculation [16].
Ag+ and I− are shown as large grey and black spheres, respectively. The borate network is shown
as a joined sequence of B (small dark grey spheres) and O (small light grey spheres).

the volume available to the conducting ions. Random walk simulations through the bond
valence-generated conduction pathways were also used to relate the self-diffusion constant to
the experimental ionic conductivity.

The superionic borate glasses, such as (AgI)x(Ag2O–nB2O3)1−x , have also been much
studied using x-ray diffraction and EXAFS [156, 157]. The addition of the network modifier,
Ag2O, to the network former, B2O3, strongly changes the local and intermediate-rangeorder of
the glass from a planar triangular structure to a structure which also contains negatively charged
BO4 units. This gives rise to an ionic conductivity, which is enhanced further by the addition
of the dopant salt, AgI, such that values typical of superionic conductors are observed at room
temperature. The AgI dopant has the effect of expanding the borate glassy network, without
significantly changing the network structure. Again, evidence for clusters of ‘crystalline’ AgI
were not found in the glass.

This may be contrasted with a number of studies of specially prepared glassy samples
where microcrystallites of α-AgI are formed within the glassy matrix. The initial paper [158]
described how AgI–Ag3BO3 mixtures were melted and then cooled extremely quickly using
twin-roller quenching. Compositions with around 90 mol% AgI, cooled to room temperature
at ∼5 × 105 K s−1 or faster, produced a glassy matrix containing crystallites of the high-
temperature α-AgI superionic phase. The samples had a high ionic conductivity at room
temperature (σ ∼ 0.1 �−1 cm−1), a small increase at 420 K (the β–α phase transition for bulk
crystalline AgI) due to the conversion of a small amount of residual β-phase and, on cooling,
the α-AgI crystallites transformed to β-AgI at around 383 K. Other similar materials have also
been identified, in the family AgI–Ag2O–MxOy, with Mx Oy = B2O3, GeO2, P2O5, V2O5,



R854 Topical Review

MoO3 and WO3 [156, 160]. Since the early papers, there has been considerable work (using x-
ray diffraction, differential scanning calorimetry, field emission scanning electron microscopy
and NMR) on a variety of related glassy materials. These measurements have investigated the
influence of composition, cooling rates and repeated heat cycling on the relative formation of
amorphous and crystalline (β- and α-AgI) components (e.g. [161–163]).

5.5. Other superionic systems

There are a number of other superionic systems that have been studied. These include
proton conductors (e.g. [125, 164]), polymer electrolytes (e.g. [165]) and superionic materials
prepared as thin films or nanocrystals (e.g. [166]). However, with the exception of the proton
conductors (which is a complete scientific area in its own right), there have not been many
rigorous investigations of the structural disorder associated with the superionic process. In the
main, therefore, they are emergent systems and it would be pre-emptive to summarize them
here.

6. Conclusions

This review provides a detailed summary of the current state of investigation of the disordering
processes in superionic conductors. These span from the extensive work on typical systems
such as α-AgI and α-CuI, which are amenable to many different investigative methods, to
the more technologically relevant, but chemically more complex systems, where the disorder
associated with superionic conduction is less easy to characterize. In general, since the interest
concerns the nature of the structural disorder resulting from, or contributing to, a dynamic
process, it is a difficult area to characterize. Often the most progress is made when different
complementary methods are combined. This is seen in the MD and RMC studies of CuI,
or the combined neutron isotopic substitution, x-ray diffraction and EXAFS measurements
of superionic glasses. Also, recent investigations at high pressure and high temperature may
be seen as an important alternative to chemical doping studies. As this review shows (by
deliberately focusing on current work), superionic conductor research is still active; largely
driven by the need to underpin various technological advances. It is believed that this will
continue and further improvements in our understanding of the superionic state will evolve in
the years to come.
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